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The linear inviscid stability of two families of centrifugally stable rotating flows in
a stably stratified fluid of constant Brunt–Väisälä frequency N is analysed by using
numerical and asymptotic methods. Both Taylor–Couette and Keplerian angular
velocity profiles ΩTC = (1 − µ)/r2 + µ and ΩK = (1 − λ)/r2 + λ/r3/2 are considered
between r = 1 (inner boundary) and r = d > 1 (outer boundary, or without boundary if
d = ∞). The stability properties are obtained for flow parameters λ and µ ranging from
0 to +∞, and different values of d and N . The effect of the gap size is analysed first.
By considering the potential flow (λ= µ = 0), we show how the instability associated
with a mechanism of resonance for finite-gap changes into a radiative instability
when d → ∞. Numerical results are compared with large axial wavenumber results
and a very good agreement is obtained. For infinite gap (d = ∞), we show that the
most unstable modes are obtained for large values of the azimuthal wavenumber for
all λ and µ. We demonstrate that their properties can be captured by performing
a local analysis near the inner cylinder in the limit of both large azimuthal and
axial wavenumbers. The effect of the stratification is also analysed. We show that
decreasing N is stabilizing. An asymptotic analysis for small N is also performed and
shown to capture the properties of the most unstable mode of the potential flow in
this limit.
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1. Introduction
The stability of rotating flows has been the subject of an enormous amount of

works as it concerns almost all the domains of applications of fluid mechanics.
Simple inviscid stability criteria have been obtained for axisymmetric rotating flows
described by their azimuthal velocity profile V (r). It is known (Hopfinger & van
Heijst 1993) that a rotating flow is stable with respect to the centrifugal instability if
d(rV )2/dr > 0 for all r , and stable with respect to the shear instability if its vorticity
r−1d(rV )/dr has no local extremum at any radial location r > 0. These stability
criteria are not affected by a (stable) linear stratification along the vortex axis, but a
new instability, called the strato-rotational instability (SRI) is however possible. This
instability has been predicted and observed in Taylor–Couette systems (Withjack &
Chen 1974; Molemaker, McWilliams & Yavneh 2001; Shalybkov & Rüdiger 2005;
Le Bars & Le Gal 2007). Using a small-gap approach, Yavneh, McWilliams &
Molemaker (2001) showed that the instability mechanism can be understood as
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a resonance of boundary trapped waves. Here we analyse the instability by using a
different asymptotic approach, based on Wentzel–Kramers–Brillouin–Jeffreys (WKBJ)
approximations for large axial wavenumbers (Le Dizès & Lacaze 2005), which allows
us to consider large-gap systems as well as radially open flows. This method has been
used by Billant & Gallaire (2005) for the centrifugal instability in a homogeneous
Taylor–Couette flow. Lamb–Oseen and Rankine vortices in a stratified fluid were
considered in Le Dizès & Billant (2009) and Billant & Le Dizès (2009). They were
able to show that the instability is directly associated with the emission of internal
gravity waves, in agreement with earlier results by Schecter & Montgomery (2004).
Froude and Reynolds numbers effects were further analysed in Riedinger, Le Dizès &
Meunier (2010a) for the Lamb–Oseen vortex. Experimental results were also obtained
in Riedinger, Meunier & Le Dizès (2010b). In Riedinger et al. (2010a), the authors
were able to show that two types of helical modes (m = 1) could become the most
unstable. The first type corresponds, for small axial wavenumbers, to a displacement
mode. For large Reynolds numbers, it is the most unstable mode for small Froude
number (F < 2). The second type of mode is a so-called ring mode, which is the first
of an infinite series of modes. In the geophysical context, this mode corresponds to
a vortex Rossby wave with an internal gravity wave structure far from the vortex. It
was shown in Le Dizès & Billant (2009) that these modes are well described by the
WKBJ approach.

Our first goal is here to quantify the effect of angular velocity variations on the
characteristics of the instability. The flow domain will be limited by a rigid cylindrical
boundary at r = 1. As a consequence, the displacement mode found for the Lamb–
Oseen vortex in a fully open domain will not be present. However, similar ring modes
will be found. The second goal is to study the effect of the outer boundary and
to analyse how the transition between the SRI in a Taylor–Couette system and the
radiative instability in an open domain occurs. The third goal is to provide some
quantitative results on the variation of the stability properties with respect to the
azimuthal wavenumber and the strength of the stratification.

The paper is organized as follows. The framework is briefly presented in § 2. We
first consider a potential flow and analyse for such a flow successively the effect of
the outer boundary (§ 3), the dependence on the stratification (§ 4), and the variation
of the stability properties with respect to the azimuthal wavenumber (§ 5). Also in
§ 5 an asymptotic analysis for large m is performed. In §§ 6 and 7, numerical results
are obtained for the Taylor–Couette and Keplerian flows in the larger-gap limit and
compared with asymptotic results. In the appendices, two asymptotic analyses are
performed for the potential Taylor–Couette flow.

2. Base flow and perturbation equations
We shall consider two families of rotating flows defined by their azimuthal velocity

profile:

VTC =
1 − µ

r
+ µr, with 0 � µ for 1 � r � d, (2.1a)

VK =
1 − λ

r
+

λ

r1/2
, with 0 � λ for 1 � r � d, (2.1b)

where r is the radial cylindrical coordinate. Each family can be considered as a
perturbation of the potential flow obtained for µ = λ= 0. The first family (VTC )
corresponds to the classical Taylor–Couette flow profile. It is an exact solution of the
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Navier–Stokes equations. The second family is a model which has been introduced
to describe thin accretion disks (Dubrulle et al. 2005a). It corresponds to a pure
Keplerian flow for λ= 1. This second family of flows is a solution of the Navier–
Stokes equations if we add the radial velocity component U = −3ν/(2r) where ν is
the kinematic viscosity. Here, we shall not consider viscous effects and thus neglect
such a radial flow.

For both flows, the fluid is assumed to be stably stratified along the z-axis of rotation
with a constant Brunt–Väisälä frequency N =

√
−(g/ρ)∂ρ/∂z. The deformations of

the isopycnals and isobars induced by the rotation can be easily calculated from the
cyclostrophic and hydrostatic balances for both velocity profiles. However, the effect
of these deformations on the perturbations will not be considered as a Boussinesq
approximation will be used in the following. Moreover, the diffusion of the density
will be also neglected. With the normalization chosen for the base flow, N can be
considered as the inverse of an horizontal Froude number. All values of the Froude
number will be considered.

Note that for negative parameters λ and µ, both flows are unstable with respect to
the centrifugal instability. This instability is much stronger than the instability that
we shall describe here. For this reason, we have limited the study to positive values
of µ and λ.

For large gap, the Taylor–Couette flow mimics the flow around a vortex in a
rotating environment. The Rossby number for this vortex is related to µ by the
relation Ro =(1 − µ)/µ. Thus, the parameter range 0 <µ< 1 corresponds to cyclonic
vortices whereas the range µ > 1 describes weak anticyclones of Rossby number |Ro|
smaller than 1.

In the accretion disk literature (see Goldreich & Lynden-Bell 1965; Narayan,
Goldreich & Goodman 1987), the Keplerian flow (λ= 1) has often been modelled
by a small-gap Taylor–Couette flow with µ = 1/4. This corresponds to the local
approximation of the Keplerian flow for which both flows possess the same shear-
to-rotation ratio Ω ′/Om (Ω being the angular velocity) equal to −3/2. The stability
properties of the flow in this small-gap limit have been obtained in Yavneh et al.
(2001) and Dubrulle et al. (2005b). We shall see that they sensibly differ from those
obtained for an unbounded Keplerian flow.

We consider linear normal mode perturbations for the velocity ũ = (ũ, ṽ, w̃), pressure
p̃ and density ρ̃ of the form

(ũ, p̃, ρ̃)(r, θ, z, t) = (u, p, ρ)(r)eikz+imθ−iωt , (2.2)

where k and m are axial and azimuthal wavenumbers and ω is the frequency. If we
neglect the diffusion processes and use the Boussinesq approximation, the linearized
equations for these perturbations become

−iΦu − 2Ωv = −dp

dr
, (2.3a)

−iΦv + ζu = − imp

r
, (2.3b)

−iΦw = −ikp − N 2ρ, (2.3c)

−iΦρ = w, (2.3d)

1

r

d(ru)

dr
+

imv

r
+ ikw = 0, (2.3e)
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Figure 1. Frequency ωr (a) and growth rate ωi (b) versus the rescaled axial wavenumber k/N
of the helical mode m= 1 for µ= 0, N = 5 and d = 5. Symbols: numerical results. Solid lines:
WKBJ results for d = 5 (defined in (A 8)). The dashed lines are the WKBJ results for d = ∞
(see (A 7)). The colours in (b) correspond to the frequencies indicated with the same colour in
(a) and for which ωi > 0.

where Φ(r) = ω−mΩ(r) is the Lagrangian frequency, and Ω(r) = V/r and ζ (r) = V ′ +
V/r are the angular velocity and the axial vorticity of the flow. These equations can be
reduced (Le Dizès & Billant 2009) to a single equation for the amplitude ψ(r) = ru(r):

d2ψ

dr2
−

(
1

r
+

G′

G

)
dψ

dr
+

[
mζ

rΦ

(
ζ ′

ζ
− G′

G
− 2

r

)
+

k2(Φ2 − 2ζΩ)

N2 − Φ2
− m2

r2

]
ψ = 0, (2.4)

where G(r) = m2/r2 + k2Φ2/(Φ2 − N2). By applying vanishing boundary conditions
on u, or a condition of outward radiation if d = ∞, we obtain an eigenvalue problem
for ω. This problem is solved numerically by using either a shooting method with
(2.4) or a pseudospectral collocation method with the system (2.3). Details on the
numerical techniques can be found in Riedinger et al. (2010a). For each flow, we
have three base flow parameters µ or λ, N and d and two perturbation parameters
m and k.

3. Effect of the finite gap size
In this section, we want to analyse the effect of the parameter d , in order to

understand the limit d → ∞. For this purpose, we shall focus on the potential Taylor–
Couette flow which corresponds to the flow profile obtained for µ = 0 or λ=0.

Small-gap configurations have been considered by Yavneh et al. (2001) who have
shown that the flow is unstable when the fluid is sufficiently stratified. In figure 1,
results for a large-gap configuration (d = 5) are plotted. The two series of frequency
curves shown in figure 1(a) correspond to the trapped modes already mentioned
by Yavneh et al. (2001). The different branches correspond to the number of radial
oscillations of the modes in the region where they exist. Resonance occurs at the
crossing point of these curves. Around each crossing point, one of the two modes
becomes unstable. The growth rate associated with each resonance is plotted in
figure 1(b). In these figures are also plotted the theoretical predictions obtained by a
WKBJ analysis in the limit of large axial wavenumbers. This theory, which is presented



The strato-rotational instability of Taylor–Couette and Keplerian flows 151

1 2 3 4 50

0.01

0.02

0.03

0.04

0.05

N
1 2 3 4 50

N
1 2 3 4 50

N

ω
im

ax

ω
rm

ax

5

10

15

20

25

30

35

40

km
ax

0.4

0.5

0.6

0.7

0.8

0.9

1.0(a) (b) (c)

Figure 2. Characteristics of the most unstable helical mode (m= 1) for an unbounded
potential Taylor–Couette flow (µ= 0, d = ∞). (a) Maximum growth rate; (b) wavenumber; (c)
frequency. The dotted lines are the limits of the small N domains for which a critical point
exists in the eigenmode structure. These lines are given by ω = N and ω = 1 − N for r+

c and
r−
c respectively.

in Appendix A, has already been used for non-stratified vortices (Le Dizès & Lacaze
2005) and stratified columnar vortices (Billant & Le Dizès 2009; Le Dizès & Billant
2009). For the potential Taylor–Couette flow (µ = 0), it provides an explicit dispersion
relation as a function of the parameters N , k and m. In figure 1, both the theoretical
predictions for d = 5 and d = ∞ have been plotted. Note that for the bounded case
(d = 5), theory and numerics agree both for the frequency and the growth rate. For
d = ∞, one can notice in figure 1(a) that one part of the spectrum has disappeared:
the modes localized near the outer cylinder, and which correspond to the branches
with a decreasing behaviour with respect to k/N , are no longer present. Only the
modes close to the inner cylinder remain. The frequency of these modes is very close
to their counterparts for d =5. However, their growth rate curves do not exhibit
the oscillating behaviour observed for finite d . These oscillations are associated with
the resonance of the trapped boundary modes. This mechanism of resonance has
been described in several places (see e.g. Satomura 1981; Yavneh et al. 2001; Gula,
Plougonven & Zeitlin 2009). When the outer boundary is absent, no resonance is
possible and the growth is due to another mechanism associated with internal wave
emission. This instability mechanism has been described in Le Dizès & Billant (2009)
and Billant & Le Dizès (2009). Billant & Le Dizès (2009) have also provided a
theoretical dispersion relation for a Rankine vortex which is very similar to (A 7).
The differences are only due to the different condition at r = 1. By contrast with the
resonance instability mechanism, the radiative instability concerns a very large band
of wavenumbers.

4. Dependence on the stratification
In this section, we consider the effect of the stratification. The above results have

been obtained for a large value of N . In figure 2, we have plotted the characteristics of
the most unstable helical mode (m = 1) for an unbounded potential Taylor–Couette
flow (µ = 0, d = ∞) for N between 0.1 and 5. We clearly see in figure 2(a) that the
growth rate decreases as N decreases below 1. The progressive stabilization of the
radiative instability mode can be associated with the appearance of a critical point
in its radial structure as already described in Riedinger et al. (2010a). For the helical
mode (m = 1), these critical points r±

c satisfy Ω(r±
c ) − ω = ±N . The domains in the

(N, ω) plane where such critical points exist in the structure of the mode are delimited
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Figure 3. Density amplitude (normalized at r = 1) of the most unstable helical mode (m=1)
for an unbounded potential Taylor–Couette flow (µ= 0, d = ∞). Thick solid line: absolute
value; solid line: real part; dashed line: imaginary part. The positions of the real part of
the double turning point rt and of the critical point r+

c are also indicated. (a) N = 1, k = 8.7,
ω =0.532 + 0.0461i; (b) N = 0.25, k = 16, ω = 0.828 + 0.018i.

by the two dotted lines in figure 2(c). This figure indicates that the outer critical point
r+
c is present as soon as N < 0.6, whereas the inner critical point r−

c is never present
in the most unstable mode structure. The effect of the critical point is visible on the
eigenmode structure (see figure 3). Whereas the radiative structure is present up to
infinity for large N (figure 3a), it disappears after r+

c for small N (figure 3b).
It is worth mentioning that the instability does not disappear for small N . The

characteristics of the instability in this limit are provided in Appendix B. We show that
for all m > 0, the most unstable mode becomes localized in an O(N) neighbourhood
of the inner cylinder. Its most dangerous wavenumber diverges as k ∼ 4.7 m N−1 and
its frequency converges to m as ω − m ∼ (−0.66 + 0.073i)N . The density amplitude of
the most unstable mode in the small N limit is given in figure 9(b) of Appendix B.
Comparison of this figure with figure 3(b) shows that the mode structure for N = 0.25
is already well described by the small N analysis.

5. Dependence on the azimuthal wavenumber
In figure 4, we have plotted the numerical results obtained for m =1, 2, 5 and 10 for

an unbounded potential Taylor–Couette flow (d = ∞, µ = 0) for N = 5. These curves
tend to show that both the growth rate and the frequency increase with m. This
tendency is also in agreement with (A 12) which corresponds to the behaviour for
large m of the WKBJ results. However, in this asymptotic theory, m is assumed fixed
and finite, so it a priori does not apply.

In the large m limit, a new asymptotic theory has to be constructed. The numerical
results tend to show that the unstable modes become more and more localized near
the inner boundary as m increases. Based on this observation, it is natural to introduce
the following scaling:

r̄ = m(r − 1), ω = m + ω0, k = mNk1. (5.1)

Moreover, if we assume that N � 1, which permits replacing N2 − Φ2 in (2.4) by N2

(this is the hydrostatic hypothesis), (2.4) becomes

∂2ψ

∂r̄2
− 2

a2(r̄ − r̄o)

a2(r̄ − r̄o)2 − 1

∂ψ

∂r̄
+

(
a2(r̄ − r̄o)

2 − 1 − b

a2(r̄ − r̄o)2 − 1
− c

)
ψ = 0, (5.2)
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Figure 4. Frequency ωr (a) and growth rate ωi (b) versus the rescaled axial wavenumber k/N
of the most unstable mode of azimuthal wavenumber m in a potential Taylor–Couette flow in
an infinite gap (µ= 0, d = ∞) for N = 5.

where

a = k1|Ω ′
1|, b = −2Ω ′

1ζ1k
2
1, c = 2Ω1ζ1k

2
1, r̄0 = ω0/Ω

′
1. (5.3)

This equation is a priori valid for any vortex. The parameters m and N have
disappeared from the problem and the mean flow profile now only enters via the
values Ω1 and Ω ′

1 of the angular velocity and its radial derivative at r =1. This
means that the eigenvalue problem now only depends on the local behaviour of the
angular velocity near r = 1. Here, our normalization guarantees that Ω1 = 1 and that
Ω ′

1 = 2µ − 2 for Taylor–Couette flows and Ω ′
1 = λ/2 − 2 for Keplerian flows. For

large m and large N , the stability properties of each flow can then be deduced from
the other by changing µ ↔ λ/4. In particular, the pure Keplerian flow (λ= 1) has
therefore the same stability property as the Taylor–Couette flow with µ = 1/4 in these
limits. It is important to emphasize that the equivalence of both flows is not due to a
small-gap approximation. Here the flow is unbounded and only the most dangerous
perturbation is localized in a very small region close to the inner boundary.

For the potential flow, we have a =2k1, b = c = 0, r̄0 = ω0/2. The results obtained
by integrating (5.2) with these coefficients are compared to the numerical results
obtained for m =1, 2, 5, 10 and 20 in figure 5. We clearly see that as m increases the
numerical results tend to converge to the large m asymptotic theory curve. Note also
that the WKBJ theory (defined in (A 12)) predicts correctly the frequency but it fails
to provide a good estimate for the growth rate for large m.

6. Taylor–Couette flows in the large-gap limit
In this section, we consider Taylor–Couette flows for an infinite gap (d = ∞). We

first want to analyse how the instability is modified when background rotation is
added. We consider Taylor–Couette flow profiles (2.1a) for 0 <µ. The growth rate
contours obtained by the large m analysis are shown in figure 6. We clearly see the
stabilizing effect of the background rotation. It is difficult to evaluate the critical
parameter µ above which the flow becomes stable because the maximum growth rate



154 S. Le Dizès and X. Riedinger

0 2 4 6 8 10
−3.0

−2.5

−2.0

−1.5

−10

−0.5

0

k/(Nm)
2 4 6 8 10

k/(Nm)
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10
ω

r 
– 

m

ωi

(a) (b)
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Figure 6. Growth rate contours in the (k/(Nm), µ) plane for Taylor–Couette flows obtained
by the large m analysis for large N . The dashed line corresponds to the 10−3 contour. This
plot also provides the growth rate contours for Keplerian flows where µ is changed to λ/4.

tends to asymptote the zero growth rate curve as µ increases. Nevertheless, as seen
in figure 6, for µ > 0.4 the maximum growth rate becomes smaller than 10−3, so the
radiative instability is not expected to play any role above this value of µ.

The stabilizing effect of the background rotation is present for all values of m. In
figure 7(a), we have plotted the growth rate of the most unstable mode as a function
of µ for several values of m for a strongly stratified case (N = 20). We can see that
the numerical results converge to the results of the large m analysis as m increases.

The dependence of the stability properties on the strength of the stratification is
summarized in figure 7(b). In this figure are plotted the contours of the maximum
growth rate as both N and µ are varied for a fixed value of m (here m =10).
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Figure 7. Stability properties of Taylor–Couette flows. (a) Maximum growth rate (over k)
versus µ for m= 1, 2, 5, 10, 20 (dashed lines) for N = 20. Increasing m are from bottom to top.
The prediction obtained by the large m analysis is indicated as a solid line. (b) Maximum
growth rate contours in the (N,µ) plane for m= 10. The dashed line corresponds to the 10−3

contour.

Similar contour plots are obtained for other values of m. As expected, decreasing the
stratification is stabilizing for all µ. The stabilizing mechanism is the same as the one
already discussed in § 4. However, when µ 	= 0, the properties of the unstable modes
are different for small N . The growth rate tends to zero much more rapidly than
for µ = 0. In the limit of large m, we suspect that the instability remains present but
with an exponentially small growth rate for small N . In practice, we do not expect
the instability to play any role when the growth rate becomes smaller than 10−3. The
dashed line shown in figure 7(b) can therefore be considered as a good estimate of
the marginal stability curve.

7. Keplerian flows in the large-gap limit
As mentioned above, for large N and large gaps, the most unstable modes are

obtained for large azimuthal wavenumbers and the stability properties of Keplerian
flows can be deduced from those of Taylor–Couette flows by changing λ to 4µ.
Figure 6 thus also provides the maximum growth rate contours of Keplerian flows
for large N . Keplerian flows are thus expected to be stable for λ � 1.6.

It is also interesting to look at the properties of the Keplerian flows for moderate
m. In figure 8(a) are displayed the marginal stability curves of the first azimuthal
modes. It shows that, as background rotation for Taylor–Couette flows, the Kepler
component of the flow is stabilizing. The first thirteen azimuthal modes become
progressively stable as the parameter λ is increased. For the pure Keplerian flow
(λ= 1, d = ∞), only the modes with an azimuthal wavenumber larger than or equal
to 14 remain unstable. The growth rate contours of the modes in the (k/N, m) plane
are shown in figure 8(b) for that case. One can notice that the instability growth rates
are now much smaller than for the potential Taylor–Couette flow (λ= 0). Numerical
results have also been obtained for different stratifications (not shown). We have
obtained that when the stratification is weakened, higher azimuthal wavenumbers
also stabilize. When N is smaller than 1, the growth rate of all the modes is smaller
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Figure 8. Numerical results for Keplerian flows for N = 5 and d = ∞. (a) Marginal stability
curves (zero growth rate curves) for different azimuthal wavenumbers in the (k/N, λ) plane.
(b) Growth rate contours in the (k/N,m) plane for the pure Keplerian flow (λ= 1).

than 10−4. In this regime, the pure Keplerian flow (λ= 1, d = ∞) can be considered
as stable.

8. Conclusion
We have analysed two families of centrifugally stable rotating flows in the presence

of stable stratification. We have first seen that the SRI discovered in a finite gap
stratified Taylor–Couette flow (Molemaker et al. 2001; Shalybkov & Rüdiger 2005;
Le Bars & Le Gal 2007) is transformed into a radiative instability (Le Dizès & Billant
2009) as the gap size goes to infinity. However, the characteristics of both instabilities
are different. Whereas SRI is characterized by small instability bands around specific
resonant wavenumbers, the radiative instability concerns (in the inviscid limit) an
infinitely large interval of wavenumbers. The transition from one instability to the
other occurs by a progressive displacement of the resonant wavenumbers towards the
origin and a progressive overlapping of the instability bands. The maximum instability
growth rate is also found to decrease, the radiative instability being less severe than
the instability in a finite gap.

For an unbounded configuration, we have analysed the sensitivity of the instability
to variations of the rotation profile. Whatever the stratification, we have seen that the
most unstable profile is the potential flow. Both the addition of a background rotation
and of a Keplerian flow component have been found to be stabilizing. For strong
stratification (large N), the maximum growth rate for the Taylor–Couette flows has
been shown to become negligible (smaller than 10−3) as soon as µ > 0.4. This means
that both weak cyclonic and anticyclonic vortices of Rossby number smaller than 1
(in absolute value) are stable with respect to the radiative instability. For large N , we
have obtained that Keplerian flows are unstable when λ< 1.6. The pure Keplerian
flow (λ= 1) is thus unstable but the maximum growth rate of the instability which is
obtained for large N remains small of order 3 × 10−3 the maximum angular velocity
of the flow.
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The dependence of the radiative instability on the azimuthal wavenumber m has
also been analysed. We have shown that the most unstable modes are obtained for
large m and that their characteristics are well reproduced by an asymptotic analysis in
the limit of large axial and azimuthal wavenumbers. This analysis has also permitted
us to show that for large N and large gaps, the most unstable modes are localized
near the inner boundary and that the stability properties of Keplerian flows can be
deduced from those of Taylor–Couette flows with µ = λ/4. For the pure Keplerian
flow, we have also shown that only modes of m � 14 can become unstable.

The effect of the stratification on the instability has also been quantified. We have
seen that decreasing the stratification is always stabilizing. In particular, we have
observed that the pure Keplerian flow becomes stable for N below 1. In contrast,
the potential Taylor–Couette flow remains unstable for small N with a growth rate
proportional to N . An asymptotic analysis in the limit N → 0 has provided the
structure of the instability mode in this limit.

9. Discussion
The results of the present paper can be applied to geophysical vortices and to

accretion disks.
The unstable radiative modes obtained here are also present in vortices for which

there is no inner boundary. They correspond to the ‘ring modes’ described in a
general framework in Le Dizès & Billant (2009). As shown in that paper and in
Billant & Le Dizès (2009), they exist for both a Gaussian vortex and a Rankine
vortex. Moreover, as shown in Riedinger et al. (2010a), they survive the addition
of a weak viscosity. The results for the unbounded Taylor–Couette flow provide
information on the effect of background rotation on the radiative instability. We
have seen that the instability is present for large N for µ < 0.4. This means that
it is expected to affect cyclonic vortices of Rossby number Ro > 1.5. The weak
anticyclonic vortices (|Ro| < 1), that is those which are stable with respect to the
centrifugal instability, are in contrast not expected to possess the unstable radiative
ring modes. A typical atmospheric mesocyclone of diameter 10 km, maximum speed
20 m s−1, at mid-latitude (N∗ ≈ 10−2 rad s−1, f ≈ 10−4 rad s−1) for which Ro and N

are 10 and 5, respectively, would therefore be unstable with respect to the radiative
instability. In contrast, meddies or other coherent vortices in the oceans for which the
Rossby number is in general smaller than 1 would not be affected by radiative ring
modes. However, they could be affected by the radiative instability mode which has
been filtered out in our analysis, that is, the displacement mode. As such a mode has
a longer characteristic wavelength, it is probably necessary to take into account the
finite length of the vortex to determine whether it could exist in real vortices.

The source of the momentum transport in accretion disks is still an open question.
Numerous possibilities have been put forward ranging from magneto-rotational
instability to subcritical shear instability (see e.g. Balbus & Hawley 1998). The strato-
rotational instability is among these possibilities as a disk is stratified along its
rotation axis. In thin accretion disks, Dubrulle et al. (2005a) have estimated the
normalized Brunt–Väisälä frequency N to be 0.3 and have shown using the small-gap
Taylor–Couette approximation (or shearing box model) that the pure Keplerian flow
should be unstable. We have reached a different conclusion when the unbounded
Keplerian profile is used. We have found that the small azimuthal modes m � 13 are
all stable in a pure Keplerian flow whatever the stratification and that the higher
azimuthal modes m � 14 which are unstable for strong stratification become stable as
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soon as N < 1. This discrepancy comes from the different nature of the instability in
both approaches. The instability modes obtained by Dubrulle et al. (2005a) (see also
Molemaker et al. 2001) need the presence of close boundaries as they result from the
resonance of boundary trapped modes, whereas our modes exist in an unbounded
domain. Note, however, that our modes tend to be localized near the inner boundary.
It is therefore not clear how they will be modified with more realistic boundary
conditions.

Financial support from the french national agency for research (ANR) under
contracts # BLAN06-3-137005 (FLOWINg Project) and # ANR-07BLAN-0182
(IMAGINE Project) is gratefully acknowledged. This work has also benefitted from
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Appendix A. WKBJ analysis of the potential Taylor–Couette flow
In this appendix, approximate dispersion relations are obtained for the potential

Taylor–Couette flow (µ = 0 or λ= 0) by the large-wavenumber WKBJ analysis which
has already been used in Le Dizès & Lacaze (2005) and Le Dizès & Billant (2009). The
idea is to construct eigenmodes by matched asymptotic methods (see e.g. Bender &
Orszag 1978).

For the potential Taylor–Couette flow, the flow domain can be divided into three
parts. An inner region localized near the turning point rt =

√
m/ω where Φ = 0 and

two outer regions O± located on either side of rt .
In the outer regions, the solution can be described in terms of WKBJ

approximations (Bender & Orszag 1978). Applying the boundary condition at r = 1
implies that, in the region O− between 1 and rt , the solution can be written as

Ψ − = AQ(r) sin

(∫ r

1

β

)
(A 1)

with

β = k
Φ√

N2 − Φ2
, Q(r) = r1/2G1/4. (A 2)

Similarly, the solution in the region O+ between rt and d can be written as

Ψ + = BQ(r) sin

(∫ r

d

β

)
, (A 3)

when a boundary is present at r = d and as

Ψ + = BQ(r) exp

(
i

∫ r

rt

β

)
, (A 4)

when there is no outer boundary.
The dispersion relation is obtained by matching these solutions with the solution

in the inner region which is described by the following equation:

∂2Ψ

∂r̃2
− 2

r̃

∂Ψ

∂r̃
+ α2r̃2Ψ = 0 (A 5)

with r̃ = k(r − rt ) and α = |mΩ ′
t /N |. Writing the solution of (A 5) as

Ψ (r̃) = r̃3/2
[
ÃH

(1)
3/4(αr̃2) + B̃H

(2)
3/4(αr̃2)

]
, (A 6)
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we easily obtain from the behaviour of the Hankel functions at ∞, the condition of
matching leading to the dispersion relations

K2
1t = i

√
2, (A 7)

when d = ∞ and (
K2

1t − i
√

2
)(

K2
td − i

√
2
)

= −K2
1tK

2
td , (A 8)

when d is finite, where

K1t = exp

(
i

∫ rt

1

β

)
, Ktd = exp

(
i

∫ d

rt

β

)
. (A 9)

In the strongly stratified limit, the dispersion relation can be further simplified
because in this limit

K1t ∼ exp

(
i
kω

N

(√
m

ω
− 1

)2
)

, Ktd ∼ exp

(
i
kω

dN

(
d −

√
m

ω

)2
)

. (A 10)

In particular, (A 7) can be written explicitly as

ω =

[√
N

k

(
nπ +

π

4
− i

log(2)

4

)1/2

+
√

m

]2

, (A 11)

where n is an integer.
Note finally that for large m, this expression reduces to

ω − m ∼ 2

√
Nm

k

(
nπ +

π

4
− i

log(2)

4

)1/2

. (A 12)

Appendix B. Small N analysis of the unbounded potential Taylor–Couette flow
As N goes to zero, the most unstable modes of the unbounded potential flow (µ = 0,

d = ∞) tend to become more and more localized near the inner cylinder at r = 1. We
therefore expect that the structure of these modes can be captured by performing a
local asymptotic analysis as N goes to zero of the solution near r = 1. The procedure
of such an analysis is classical (see Bender & Orszag 1978) and is based on the use
of a local variable.

Here, for any fixed m > 0, the appropriate change of variables is

y =
mΩ ′

1(1 − r)

N
+ ω1, ω = m + ω1N, k =

kom|Ω ′
1|

N
, (B 1)

where Ω ′
1 = −2 for the potential flow. It allows us to transform (2.4) at leading order

in N as N → 0 to an equation which only depends on the parameter ko:

∂2ψ

∂y2
− 2

y(1 − y2)

∂ψ

∂y
+

koy
2

1 − y2
ψ = 0. (B 2)

This equation has to be solved with the condition that ψ vanishes as y goes to infinity,
such that the solution is indeed localized near the inner cylinder. The boundary
condition at r = 1, which becomes ψ(ω1) = 0, then provides ω1.

This eigenvalue problem is solved by a shooting method. The dependence of the
imaginary part of the most unstable eigenvalue ω1 on ko is shown in figure 9(a).
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Figure 9. Stability properties of the unbounded potential flow (µ= 0, d = ∞) for small N .
(a) Rescaled growth rate ωi/N (left axis and solid line) and relative frequency (ωr − m)/N
(right axis and dashed line) versus ko = kN/(2m). (b) Density fluctuation (normalized at r =1)
of the most unstable mode (obtained for ko ≈ 2.35). Thick solid line: absolute value, solid line:
real part, dashed line: imaginary part.

The most unstable mode is obtained for kmax
o ≈ 2.35 and has the following frequency:

ωmax
1 ≈ −0.66 + 0.073i. The radial structure of the density amplitude associated with

the most unstable eigenmode is plotted in figure 9(b).
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Shalybkov, D. & Rüdiger, G. 2005 Non-axisymmetric instability of density-stratified Taylor–
Couette flow. J. Phys.: Conf. Ser. 14, 128–137.

Withjack, E. M. & Chen, C. F. 1974 An experimental study of Couette instability of stratified
fluids. J. Fluid Mech. 66, 725–737.

Yavneh, I., McWilliams, J. C. & Molemaker, M. J. 2001 Non-axisymmetric instability of
centrifugally stable stratified Taylor–Couette flow. J. Fluid Mech. 448, 1–21.


